
An Adaptive Finite Volume Method for the

Incompressible Navier-Stokes Equations in

Complex Geometries

David Trebotich ∗ and Daniel T. Graves

Computational Research Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract

We present an adaptive, finite volume algorithm to solve the incompressible Navier-
Stokes equations in complex geometries. The algorithm is based on the embedded
boundary method in which finite volume approximations are used to discretize the
solution in cut cells that result from intersecting the irregular boundary with a struc-
tured Cartesian grid. This approach is conservative and reduces to a standard finite
difference method in grid cells away from the boundary. We solve the incompress-
ible flow equations using a predictor-corrector formulation. Hyperbolic advection
terms are obtained by higher-order upwinding without the use of extrapolated data
in covered cells. The small cell stability problem associated with explicit embedded
boundary methods for hyperbolic systems is avoided by the use of a volume-weighted
scheme in the advection step, and is consistent with construction of the right-hand
side of the elliptic solvers. The Helmholtz equations resulting from viscous source
terms are advanced in time by the Crank-Nicolson method which reduces solver
runtime compared to other second-order time integrators by a half. Incompressibil-
ity is enforced by a second-order approximate projection method that makes use of
a new conservative cell-centered gradient in cut cells which is consistent with the
volume-weighted scheme. The algorithm is also capable of block structured adaptive
mesh refinement to increase spatial resolution dynamically in regions of interest. The
resulting overall method is second-order accurate for sufficiently smooth problems.
In addition, the algorithm is implemented in a high performance computing frame-
work and can perform structured-grid fluid dynamics calculations at unprecedented
scale and resolution, up to 262,144 processor cores. We demonstrate robustness and
performance of the algorithm by simulating incompressible flow for a wide range of
Reynolds numbers in two and three dimensions: Stokes and low Reynolds number
flows in both constructed and image data geometries (Re � 1 to Re = 1), flow
past a cylinder (Re = 300), flow past a sphere (Re = 600) and turbulent flow in a
contraction (Re = 6300).

Key words: incompressible Navier-Stokes, embedded boundary method, finite
volume method, cut cell method, projection method, adaptive mesh refinement

∗ Corresponding author.
Email addresses: dptrebotich@lbl.gov (David Trebotich), dtgraves@lbl.gov (Daniel

T. Graves).

Preprint submitted to Elsevier 15 January 2015

1 Introduction

In this paper, we describe a conservative, high resolution algorithm for the incom-
pressible Navier-Stokes equations in complex geometries. The primary outcome of
this work is a simulation capability that can be applied to a wide range of flows
where high resolution is sought—from low Reynolds number flow in geologic or en-
gineered porous media, for example, to direct numerical simulation of turbulence.
Our approach is based on an adaptive, finite volume embedded boundary method.
In the context of a complete description of the overall algorithm, we present several
novel numerical techniques including: a volume-weighted scheme for finite volume
discretizations that avoids the small cell problem associated with hyperbolic solvers
based on cut cell methods; and a stable second-order time integration method that
is faster than other second-order schemes used in the context of embedded boundary
methods. We demonstrate second-order convergence of the algorithm. We apply the
algorithm to benchmark flow past a cylinder in 2D and 3D, flow past a sphere in
3D, high Reynolds number flow in a 2D contraction, as well as Stokes flow and low
Reynolds number flow in packed bed geometries and realistic subsurface materials.
We also demonstrate the adaptive mesh refinement capability of the algorithm as well
as scalable performance to 262,144 processor cores.

1.1 Equations of Motion

We consider the incompressible Navier-Stokes equations with constant density:

∂u

∂t
+ (u · ∇)u=−∇p+ ν∆u (1.1)

∇ · u=0 (1.2)

where u is the fluid velocity, ∇p is the pressure gradient and ν is the kinematic
viscosity. To close the system, we specify boundary conditions for a bounded inflow-
outflow problem. For example, for flow in the x-direction in a two-dimensional channel,
the boundary conditions are, at inflow,

u =
(
3

2
ū(1− y2/a2), 0

)
,
∂p

∂x
= 0, (1.3)

where ū is average inflow velocity and a is half the width of the channel in y-direction;
at solid walls,

u = 0,
∂p

∂y
= 0; (1.4)

and at outflow,

2

∂u

∂x
= 0, p = 0. (1.5)

Given initial conditions u0 = u(x, 0), p0 = p(x, 0), the system of equations defined by
(1.1)-(1.5) constitutes an initial boundary value problem (IBVP) that can be solved
by a variety of methods (e.g., immersed boundary [28], ghost fluid [18], discontinuous
Galerkin [22]). We are ultimately interested in efficient, scalable computations to ob-
tain high resolution for a wide range of Reynolds number flows in complex geometries.
We address this problem with a predictor-corrector projection formulation based on
a finite volume, embedded boundary method with adaptive mesh refinement.

1.2 Numerical Approach

1.2.1 Embedded boundary method

Cartesian grid methods have become an increasingly popular modeling approach to
solving partial differential equations (PDEs) in complex geometries. There are sev-
eral Cartesian grid approaches (e.g., immersed boundary [44], immersed interface
[30], ghost fluid [18]), however, we focus on the cut cell approach which is based on
finite volume approximations. A cut cell, or embedded boundary, method refers to
a finite volume discretization in irregular cells on a Cartesian grid that result from
the intersection of the boundary and the rectangular cells of the grid. Conservative
numerical approximations to the solution can be found from discrete integration over
the non-rectangular control volumes, or cut cells, with fluxes located at centroids of
the edges or faces of a control volume. This approach has been used as the basis for
second-order accurate methods for elliptic, parabolic and hyperbolic PDEs in two and
three dimensions [21,34,15].

One of the advantages of the method is that the problem of generating the description
of complex geometry on the grid (starting from, for example, surface tessellations pro-
duced by a CAD system, or implicit function representation of x-ray microtomography
images) has been made more tractable [1,31]. Another advantage of the embedded
boundary method is that it is amenable to adaptive mesh refinement (AMR) [8]. Block
structured AMR is a technique to add grid resolution efficiently and dynamically in
areas of interest while leaving the rest of the domain at a coarser resolution. AMR
was originally applied to finite difference methods for inviscid shock hydrodynamics
[9], and has been extended to inviscid, incompressible flow [32] and viscous flow [3,33]
in rectangular domains. AMR has been combined with embedded boundary methods
to model inviscid and viscous compressible flows in complex geometries [43,15,19].

For incompressible flows, embedded boundary methods have been mostly applied to
inviscid flows (e.g., [2]). As attractive as cut cell methods are for efficient gridding
of complex geometries, these methods are still gaining ground in the engineering
community for modeling of incompressible viscous flows, perhaps due to the high
resolution that is required in and around cut cells to resolve viscous boundary layers.
Therefore, AMR and high performance computing have become necessary partners

3

for cut cell methods to be effective 3D modeling tools. Furthermore, discussion of
such methods usually centers around the “small cell problem” due to the arbitrary
nature of the cut cell approach; also of importance are accuracy of gradients and
higher-order strategies.

Several methods have been proposed for incompressible viscous flow using the cut
cell approach. In [60], a single-grid (non-adaptive) finite volume method is used for
2D incompressible viscous flows and is demonstrated on an array of cylinders in a
channel. In [45] adaptivity is combined with a volume-of-fluid method and applied
to practical engineering problems in 3D. Cell-merging is used to treat the small cell
problem. Second-order accuracy is demonstrated with particular attention given to
the pressure gradient. In [27] a cut cell method on a staggered grid is applied to
a moderate Reynolds number flow in 3D. A “cell-linking” method is proposed that
links small cells with a master cell, placing the cell a small distance from the master
and inducing a high diffusion flux which forces the two velocities to take the same
value. A cell-merging technique was used in [13] as part of a cut cell projection
method. In a precursor to the work presented here, an embedded boundary method
was used in [53] to model fluid-particle flow through a packed bed geometry. This
work was later generalized to AMR in a computationally efficient framework using
novel stenciling techniques in cut cells [54]. The small cell problem was addressed by a
linear hybridization of conservative and non-conservative estimates of the convective
derivative akin to [11,6] with redistribution of the unconserved mass.

1.2.2 Projection method

Projection methods address the time-discretization issue of the constrained evolution
equations of incompressible flow. These methods are based on the Hodge-Helmholtz
decomposition of a vector field into a divergence-free part and a gradient of a scalar
field, effectively separating the vortical dynamics induced by a viscous, divergence-
free velocity field from the potential flow problem. Projection methods have taken
several different paths since Chorin’s original method was introduced [12], primarily
depending on the choice of scheme for higher-order discretization of the nonlinear
advection term (e.g., [26,23]). Our approach is based on the work of Bell, Colella and
Glaz (BCG) [4], and the family of methods that followed (e.g., [29,3,50,33]). The BCG
method makes use of high resolution finite difference methods for hyperbolic PDEs,
such as Godunov or upwinding schemes, combined in a fractional step approach with
fast iterative methods for elliptic and parabolic PDEs to achieve second-order spatial
and temporal accuracy. BCG was made more robust for larger CFL numbers with the
introduction of an intermediate “MAC” (marker-and-cell) projection in the advection
step [5]. In [50] the BCG method was extended to time-dependent domains using
quadrilateral, mapped grids and a consistent decomposition of the velocity field which
standardized the implementation of boundary conditions for projection methods. The
projection method was generalized to a non-adaptive embedded boundary approach
for time-dependent domains in [36].

In this paper we combine these methods—adaptive, finite volume and projection—
using the predictor-corrector projection formulation in [50], the adaptive approach

4

in [33] and the computational fluid dynamics tools for adaptive embedded boundary
methods in [54] to solve the incompressible Navier-Stokes equations in complex ge-
ometries. The algorithm is implemented in the Chombo software framework which
supports adaptive, embedded boundary methods and also enables large scale com-
putations (chombo.lbl.gov). The resulting algorithm is conservative, second-order
accurate and scalable to 262,144 processor cores. The central new idea of the algo-
rithm is a volume-weighted scheme that avoids the small cell problem associated with
explicit embedded boundary methods and leads to better stability properties than
previous approaches in [54,15,53].

We organize the discussion of the algorithm as follows. The finite difference algorithm
is described in its entirety in §2. The embedded boundary, finite volume method is
described in §3 for the case of cut cells where the discretization requires special stencils
that differ from the finite difference method. For ease of exposition, the algorithm is
described in 2D; the 3D discretization is included if it is not an obvious extension
from 2D. We include brief descriptions of algorithm modifications needed for AMR
throughout the discussion, and particularly for hyperbolic and elliptic discretizations
near coarse-fine interfaces. Accuracy of the method, performance measurements and
simulation results are presented in §4. Conclusions are summarized and discussed in
§5.

2 Algorithm Discretization

A 2nd-order accurate in time discretization of the evolution equation (1.1) is as follows:

Un+1 =Un +∆t(ν∆Un+1/2 − (U · ∇)Un+1/2 −∇pn+1/2)

where Un is an approximation of the velocity field at the discrete time tn = tn−1 +∆t.
We choose a 2nd-order upwind method for hyperbolic terms, a 2nd-order implicit
discretization of parabolic terms, and an approximate projection method to enforce
incompressibility with special centering of the pressure gradient. We combine these
methods in a semi-implicit predictor-corrector formulation based on [50] to advance
the solution.

2.1 Temporal discretization

The momentum equation (1.1) can be formulated as a parabolic equation of the form
Ut = L(U)+f(U), where L is a 2nd-order elliptic operator such as Laplacian. Second-
order accuracy in time can be achieved by the Crank-Nicolson method for parabolic
equations as in [4]. It has been previously reported that, in the presence of embedded
boundaries, the Crank-Nicolson scheme is unstable for parabolic equations, and in
particular, when the embedded boundary is moving, coefficients are strongly varying
or discontinuities exist in the solution [34]. Instead, the Runge-Kutta method of [55] is

5

recommended to achieve second-order accuracy. In practice, we have not experienced
such instabilities with Crank-Nicolson for stationary boundaries, nor in current work
with moving boundaries (e.g., [36]). Furthermore, significant computational savings
are gained from the use of Crank-Nicolson which requires only D (number space
dimensions) solutions to the Helmholtz problem while the 2nd-order Runge-Kutta
method as described in [55] requires 2D solutions to the Helmholtz problem.

The Crank-Nicolson discretization is as follows:

(I − ν∆t

2
∆)Un+1,∗=(I +

ν∆t

2
∆)Un +∆tfn+1/2 (2.6)

fn+1/2=−(U · ∇)Un+1/2 −∇pn−1/2. (2.7)

The intermediate velocity, Un+1,∗, in (2.6) is a 2nd-order approximation to the solution
that satisfies the boundary conditions but does not necessarily satisfy the incompress-
ibility constraint due to the lagged pressure gradient in (2.7).

2.2 Projection formulation

The projection method [12] is used to enforce incompressibility in discretization (2.6).
In general, a smooth vector field, w, on a simply connected domain, Ω, can be orthog-
onally decomposed into a divergence-free component wd and a gradient of a scalar
potential, ψ

w=wd +∇ψ
∇ ·wd=0

∆ψ=∇ ·w

with boundary conditions wd · n = 0 and ∂ψ
∂n

= w · n on ∂Ω. We can apply a discrete
version of the projection to the discretization (2.6) to obtain a divergence-free velocity
and pressure gradient:

Un+1 =P(W)

∇pn+1/2 =
1

∆t
Q(W)

W =Un+1,∗ +∆t∇pn−1/2

where Q = GL−1D, P = I − Q, and L, D and G are discrete representations
of the Laplacian, divergence and gradient, respectively. These projection operations
procedurally reduce to solution of the Poisson problem and an update of the velocity
and pressure gradient by the gradient of the solution to the Poisson problem

6

Lφ=D(W) (2.8)

Un+1 =W −G(φ) (2.9)

∇pn+1/2 =
1

∆t
G(φ). (2.10)

We note that the projection target, W , contains the intermediate velocity augmented
by the lagged pressure gradient resulting in a pressure formulation with improved
stability in comparison to the pressure correction formulation in [50].

The form of G, and thus, L, depends on the centering of the projection target, W ,
which is cell-centered in this case. However, the discretization of divergence, based
on the discrete form of the divergence theorem, is applied as a sum of differences of
face-centered data in each direction. In compact notation, we have

D(W)i =
1

h
(
D∑
d=1

(W
i+

1
2
êd
−W

i−1
2
êd
). (2.11)

If we also consider that the gradient is applied to the cell-centered solution to Poisson’s
equation, φi, thenD andG are not discrete adjoints, and L 6= DG. This projection is,
therefore, approximate andD(P(W)) = O(h2), the same magnitude as the truncation
error. Also, the operator is not idempotent, i.e., P2 6= P.

If the divergence and gradient are discrete adjoints and L ≡ DG, then the projection
is discretely exact, i.e., D(P(W)) = 0 [12]. This is the case of the so-called MAC
projection, defined to be Pmac ≡ (I − Qmac), and Qmac ≡ Gmac(Lmac)−1D. The
discrete Laplacian operator can then be defined as the conservative divergence of the
face-centered gradient:

Li ≡ D(Gmac(φ))i =
1

h
(
D∑
d=1

(Gmac,d(φ)
i+

1
2
êd
−Gmac,d(φ)

i−1
2
êd
). (2.12)

This is the finite difference discretization of Laplacian used in the various elliptic
operators throughout the algorithm, such as in (2.8).

The cell-centered projection can be constructed by wrapping two averaging operators
around the MAC projection:

P= I−AF→C(Qmac(AC→F)).

First, an operator to average cell-centered velocities to face centers is needed for the
divergence in (2.8). For a face with a normal direction d, the averaging operation is

AC→F (W d)
i+

1
2
êd

= 1
2
(W d

i+êd +W d
i). (2.13)

Then, an averaging operator that is used to average gradients from face centers to
cell centers is defined

7

AF→C(Gmac(φ)d)i =
1
2
(Gmac,d

i+
1
2
êd
(φ) +Gmac,d

i−1
2
êd
(φ)). (2.14)

The averaging operator, AF→C , effectively results in a centered-difference for the
gradient away from boundaries.

The face-centered gradient, Gmac, of a cell-centered scalar, φi, is defined to be the
finite difference approximation in the normal direction of the face:

Gmac(φ)d
i+

1
2
êd

=
1

h
(φi+êd − φi).

For homogeneous Neumann domain boundary conditions this gradient is 0; for Dirich-
let domain boundary conditions, we use an odd extension of the solution at the
boundary to obtain the gradient.

The transverse gradient at a face is comprised of the average of neighboring normal
gradients in transverse directions, d′, to a d-face:

Gmac(φ)d
′

i+
1
2
êd

=
1

NG

∑
i+

1
2
êd

′
∈Gd′,d

(Gmac(φ)d
′

i+
1
2
êd

′)

where Gd′,d is the set of faces in the transverse d′ direction and NG is the number of
faces in this set. On a regular grid, G is the set of four neighboring adjacent faces
in a d′ direction. At solid wall domain boundaries, linear extrapolation of transverse
gradients is used to preserve a constant pressure gradient as in Poiseuille flow. For
transverse gradients whose face stencil crosses an orthogonal domain boundary the
appropriate one-sided difference is taken.

MAC gradients which are pre-processed by the averaging operator, AF→C , in (2.14)
make use of linear extrapolation at boundary faces from interior faces to avoid over-
specification of the problem. For the cell-centered projection target which is pre-
processed by the averaging operator, AC→F , in (2.13), boundary conditions are ap-
plied to the normal component. Referring to the channel boundary conditions (1.3)-
(1.5), these are W · n = uin at the inlet, W · n = 0 at no-flow solid walls, and a
quadratic extrapolation at the outlet that satisfies the Neumann boundary condi-
tion. Projection operator gradients are matched at coarse-fine interfaces by simple
averaging as in [32].

2.3 Hyperbolic discretization

The advection term, (U · ∇)U
n+1/2
i,j , in (1.1) is discretized in conservation form since

the flow is incompressible:

∇·(UU)n+1/2
i,j =

1

h

(
u
n+1/2
i+1/2,jU

n+1/2
i+1/2,j − u

n+1/2
i−1/2,jU

n+1/2
i−1/2,j + v

n+1/2
i,j+1/2U

n+1/2
i,j+1/2 − v

n+1/2
i,j−1/2U

n+1/2
i,j−1/2

)

8

where i, j are the cell-centered grid indices in two dimensions, n is the number of the
timestep, and U = (u, v). Here, we consider two dimensions for ease of exposition—
one direction that is normal to the flow (x), and one transverse (y)—with obvious
extension of the transverse discretization to a third dimension (z).

We use an upstream-centered Taylor expansion to extrapolate the cell-centered ve-
locity to the half step in time and cell edges:

Û
n+1/2
i+1/2,j = Un

i,j +
∆x

2

∂Un

∂x
+

∆t

2

∂Un

∂t
.

Substitution of the PDE for the temporal derivative into the Taylor expansion yields
extrapolated velocities in all directions from the cell center to both sides of a cell edge
(or face, in 3D):

Ûx,+
i,j =Un

i,j +
1
2
min

[(
1− uni,j

∆t

∆x

)
, 1
]
(δNx U)

n
i,j −

∆t

2∆y
vni,j(δ

T
y U)

n
i,j +

ν∆t

2
∆Un

i,j

Ûx,−
i,j =Un

i,j − 1
2
min

[(
1 + uni,j

∆t

∆x

)
, 1
]
(δNx U)

n
i,j −

∆t

2∆y
vni,j(δ

T
y U)

n
i,j +

ν∆t

2
∆Un

i,j

Ûy,+
i,j =Un

i,j +
1
2
min

[(
1− vni,j

∆t

∆y

)
, 1

]
(δNy U)

n
i,j −

∆t

2∆x
uni,j(δ

T
xU)

n
i,j +

ν∆t

2
∆Un

i,j

Ûy,−
i,j =Un

i,j − 1
2
min

[(
1 + vni,j

∆t

∆y

)
, 1

]
(δNy U)

n
i,j −

∆t

2∆x
uni,j(δ

T
xU)

n
i,j +

ν∆t

2
∆Un

i,j

where superscripts x and y refer to the coordinate direction of the extrapolation, and
“+” and “−” indicate the direction of the extrapolation from the cell-center to the
inside of an edge (inside left/bottom of an edge is the “+” state, inside right/bottom
is the “−” state).

The monotonized 2nd-order normal slopes with van Leer limiting [56,15] are

(δNx U)
n
i,j =

 (δxU)
vL if (Un

i+1,j − Un
i,j)(U

n
i,j − Un

i−1,j) > 0

0 if (Un
i+1,j − Un

i,j)(U
n
i,j − Un

i−1,j) ≤ 0

where

(δxU)
vL=sign (Un

i+1,j − Un
i−1,j)×

min(2|Un
i,j − Un

i−1,j|, 2|Un
i+1,j − Un

i,j|, 12 |U
n
i+1,j − Un

i−1,j|).

The upwinded transverse slopes are

9

(δTy U)
n
i,j =

U
n
i,j+1 − Un

i,j +
ν∆t
2
(∆Un

i,j+1 −∆Un
i,j) if v

n
i,j < 0

Un
i,j − Un

i,j−1 +
ν∆t
2
(∆Un

i,j −∆Un
i,j−1) if v

n
i,j ≥ 0

(δTxU)
n
i,j =

U
n
i+1,j − Un

i,j +
ν∆t
2
(∆Un

i+1,j −∆Un
i,j) if u

n
i,j < 0

Un
i,j − Un

i−1,j +
ν∆t
2
(∆Un

i,j −∆Un
i−1,j) if u

n
i,j ≥ 0

with a stability correction due to [37]. All slopes make use of one-sided differences
at domain boundaries; at coarse-fine boundaries, we use linear interpolation and flux
matching [33].

A Riemann problem is then solved to obtain the edge states, Ū . For example, x-face
states are

Ūi+1/2,j =


Ûx,+
i,j if 1

2
(uni,j + uni+1,j) > 0

Ûx,−
i+1,j if 1

2
(uni,j + uni+1,j) < 0

1
2
(Ûx,+

i,j + Ûx,−
i+1,j) if

1
2
(uni,j + uni+1,j) = 0.

To make up for the omitted pressure gradient in the velocity extrapolation, the so-
lution to the Riemann problem is projected onto the space of divergence-free vectors
using a MAC projection

Un+1/2 = Pmac(Ū) = Ū −Gmac((DGmac)−1D(Ū)). (2.15)

The divergence is calculated as

D(Ūn+1/2)i,j =
[(
ūi+1/2,j − ūi−1/2,j

)
+
(
v̄i,j+1/2 − v̄i,j−1/2

)]
/h.

Both components of velocity have been accounted for up to this point, including
the boundary conditions for the normal component. The transverse component of
velocity at domain boundaries is taken to be the “+” or “−” state on the inside of
the boundary edge, in keeping with the idea of an inviscid predictor step.

Our method has a stability constraint on the timestep due to the CFL condition for
the advection terms:

∆t <
σh

umax
(2.16)

where σ ≤ 1, and umax is the magnitude of the maximum local wavespeed. For
adaptive calculations, all levels of refinement use the same timestep. We note that
subcycling in time is possible; however, it requires solution to an additional Poisson
equation to enforce the divergence-free constraint with free-stream preservation [33].

10

3 Finite volume embedded boundary method

In grid cells where the irregular domain intersects the Cartesian grid, finite volume dis-
cretizations must be constructed to obtain conservative discretizations of flux-based
operations defined by finite differences in the previous section. First, the underly-
ing description of space is given by rectangular control volumes on a Cartesian grid
Υi = [(i− 1

2
V)h, (i+ 1

2
V)h], i ∈ ZD, where D is the dimensionality of the problem, h

is the mesh spacing, and V is the vector whose entries are all one. Given an irregular
domain Ω, we obtain control volumes Vi = Υi

⋂
Ω and faces A

i±1
2
êd

which are the

intersection of the boundary of ∂Vi with the coordinate planes {~x : xd = (id ± 1
2
)h}.

The intersection of the boundary of the irregular domain with the Cartesian control
volume is defined as ABi = ∂Ω

⋂
Υi. For ease of exposition, it is assumed that there is

only one control volume per Cartesian cell. However, the algorithm described here has
been generalized to allow for boundaries whose width is less than the mesh spacing,
i.e., multi-valued cells. In regular cells, the finite volume approximation reduces to
the finite difference method described in §2.

To construct finite volume methods using this description, several quantities need to
be derived from the geometric objects:

• volume fractions, κ, and area fractions, α,

κi =
|Vi|
hD

, α
i+

1
2
ês
=

|A
i+

1
2
êds
|

h(D−1)
, αBi =

|ABi |
hD−1

,

• centroids of the faces and of ABi ; and n̂i, the average of outward normal of ∂Ω over
ABi ,

~x
i+

1
2
êd

=

 1

|A
i+

1
2
êd
|

∫
A

i+
1
2
êd

~xdA



~xBi =

 1

|ABi |

∫
AB

i

~xdA


n̂i =

1

|ABi |

∫
AB

i

n̂dA

where D is the dimension of space and 1 ≤ d ≤ D. We assume we can compute all
derived quantities to O(h2).

Geometric objects are determined by a hierarchical application of the divergence
theorem to discrete values of implicit function representations of the geometry on the
grid (see [36,31,47] for details on embedded boundary grid generation). Coarsened
geometries are obtained by coarsening of the graph. The volume of a coarse cell is
exactly the volume of the fine cells of which it is comprised. This grid generation
machinery is part of the Chombo software libraries.

11

The conservative approximation of the divergence of a flux ~F can now be defined by
applying a discrete form of the divergence theorem

D(~F)v =
1

hκv
((

D∑
d=1

(α
i+

1
2
êd
F̃ d

i+
1
2
êd
− α

i−1
2
êd
F̃ d

i−1
2
êd
) + αBv F

B
v) (3.17)

where F̃
i+

1
2
êd

indicates that the flux has been interpolated to the face centroid using

linear (2D) or bilinear (3D) interpolation of face-centered fluxes. For example, given
the cell edge with outward normal ê1, with centroid ~x, the 2D linearly interpolated
flux in the d (d 6= 1) direction is defined by

F̃ d
i+

1
2
ê1
= ηF

i+
1
2
ê1
+ (1− η)F

i+
1
2
ê1±êd

(3.18)

η=1− |~x · êd|
hd

±=

+ ~x · êd > 0

− ~x · êd ≤ 0.

The 3D bilinear interpolation of the flux for a face with normal ê1 can be written as
follows:

F̃
i+

1
2
ê1
=ωF d

i+
1
2
ê1
+ (1− ω)F d

i±êd′+1
2
ê1

(3.19)

ω=1− |~x · êd′|
hd′

±=

+ ~x · êd′ > 0

− ~x · êd′ ≤ 0

where d′ 6= d, d′ 6= 1 (see Figure 2).

3.1 Elliptic operators

The conservative discretization of the divergence theorem in equation (3.17) provides
a flux-based formula for the discretization of the elliptic operations in the algorithm.
We use the geometric multigrid approach described in [54] to solve these elliptic sys-
tems. In the context of Poisson’s equation, as in the projections (2.8) and (2.15), the

operator is the Laplacian and the flux is simply the gradient of a scalar, ~F = ∇ϕ,
with Neumann boundary conditions, FB = n̂ · ∇ϕ = 0, at the embedded bound-
ary. However, in the context of Helmholtz, as in Eq. (2.6), the embedded boundary
is a no-slip boundary for the velocity, requiring an elliptic operator with Dirichlet
boundary conditions at the embedded boundary. In this case, the flux at the embed-
ded boundary, FB = n̂ · ∇ϕ, must be constructed while maintaining global 2nd-order
accuracy.

12

In [21], the flux at the embedded boundary due to a Dirichlet boundary condition
is constructed by effectively casting a ray from the centroid of the boundary along
the normal into the domain, interpolating ϕ to points along the ray (quadratic in
2D, biquadratic in 3D), computing the normal gradient of ϕ by differencing the in-
terpolated points in 1D along the ray and obtaining a τ ≈ O(h2) local truncation
error approximation of n̂ · ∇ϕ. In general, local truncation error on the interior of a
domain is τ ≈ O(h2), and at the boundary τ ≈ O(h/κ). It can be shown that global
solution error is ε = O(h2). For the case of Dirichlet boundary conditions, the same
conclusion holds for τ = O(1) at the boundary owing to the two orders of magnitude
of freedom in the local truncation error resulting from the method of images (odd
extensions) and the homogeneous condition at the boundary. (For Neumann bound-
ary conditions, the minimum requirement to maintain second-order global error is
τ = O(h).) The conclusion for Dirichlet boundary conditions, shown in [21] using
potential theory, is that it is sufficient to have O(1) boundary conditions to achieve
second-order convergence of solution error for elliptic equations.

In practice, however, we have found that the 2nd-order stencil for Dirichlet boundary
conditions first described in [21] is not stable for lower Reynolds number flows (much
less the Stokes limit) and flows where there exist steep gradients near the boundary. To
fix this instability, we make use of the two orders of magnitude of freedom in the local
truncation error and instead apply a lower-order truncation error stencil (τ ≈ O(h))
to interpolate the flux at the irregular boundary centroid, B [51,53,52,48]. The flux,
n̂ · ∇ϕ, is obtained by solving a least squares linear system for ∇ϕ:

A · ∇ϕ= δϕ

A=(δ~x1, δ~x2, ..., δ~xp)
T

δϕ=(δϕ1, δϕ2, ..., δϕp)
T

δ~xm= ~xm − ~xB
δϕm=ϕm − ϕB.

The stencil of points (m = 1, 2, ..., p), which excludes the cut cell that contains the
embedded boundary, is determined by the direction of the normal at the boundary.
In 2D, the normal points to a quadrant which includes up, side and corner cells with
p = 3, resulting in two equations and three unknowns in the least squares system. In
3D, the normal points to an octant with p = 7, resulting in three equations and seven
unknowns. The stencils are shown in Figure 3.

In the case of very complex geometries such as those experienced in porous media flows
where boundaries are very close together and can exhibit cusps and semi-disconnected
cavities, this least squares stencil approach based on direction of the normal can be
relaxed to use any points available in a monotone path from the root cell with a radius
greater than 1 but with the same restrictions on p. For adaptive calculations, we use
higher-order (quadratic) interpolation to fill ghost cells for 2nd-order elliptic operators
(Laplacian) at coarse-fine boundaries in order to avoid O(1) truncation error [32].

We also note that geometric multigrid coarsening can be challenged in very complex
geometries. As an example, for the pressure-Poisson equations (2.8) and (2.15), the

13

presence of a semi-disconnected cavity in the domain can result in a Neumann problem
with non-zero null space. We, therefore, rely on a combined embedded boundary-
algebraic multigrid (EB-AMG) approach to solve elliptic equations in very complex
geometry cases [49].

3.2 Advective derivative

Since the flow is incompressible, we make use of the conservative form of the advection
term, ∇· (~u~u), in (3.17) with F = ~u~u. The problem with this discretization for advec-

tion is that the CFL stability constraint on the timestep is at best ∆t = O(h
vmax
i

(κi)
1
D),

where vmaxi is the magnitude of the maximum wave speed for the ith control volume.
This is the well-known small-cell problem for embedded boundary, cut cell methods.
There have been a number of proposals to deal with this problem, including merging
the small control volumes with nearby larger ones [46,14,45,27], the development of
specialized stencils that guarantee the required cancellations [10,7,20,25], or simply
using a threshold volume below which the cell is considered completely covered, i.e.,
κ = 0, as in [17].

Our previous approach in [54] was to expand the range of influence of the small control
volumes algebraically to obtain a stable method, akin to [11,6,42]. We used a linear
hybridization of conservative and non-conservative estimates of ∇ · (~u~u):

∇ · (~u~u)n+1/2
i = κi(∇ · (~u~u))Ci + (1− κi)(∇ · (~u~u))NCi).

The small denominator in ∇ · (~u~u) is canceled, and a stable method is obtained.
However, the method fails to conserve mass by an amount measured by the difference
between the hybrid discretization and the conservative one:

δMi = κi((∇ · (~u~u))Ci − (∇ · (~u~u))NCi) = κi(1− κi)(∇ · (~u~u))Ci − (∇ · (~u~u))NCi).

To maintain overall conservation, δMi can be redistributed into nearby cells i′,

∇ · (~u~u)n+1/2

i′ := ∇ · (~u~u)n+1/2

i′ + wi,i′δMi , i
′ ∈ N(i),

wi,i′ ≥ 0,
∑

i′∈N(i)

wi,i′κi′ = 1 (3.20)

where N(i) is some set of indices in the neighborhood of i, and including i. The sum
condition (3.20) makes the redistribution step conservative. The weights wi,i′ must
be bounded independent of (κi′)

−1. We use volume weighted redistribution,

wi,i′ = (
∑

i′∈N(i)

κi′)
−1

where N(i) is a set of indices, including i, within a radius of influence of one and
connected by a monotone path.

The success of this approach depends on the calculation of ∇ · (~u~u)NC because it
is almost entirely responsible for the update of ∇ · (~u~u)i in control volumes with

14

κi � 1. Specifically, ∇· (~u~u)NC must be designed so that the solution in small control
volumes comes into equilibrium with the larger control volumes around it. We now
enforce this point by summing the conservative approximation itself in a domain of
influence around the cut cell and normalizing it by the sum of volume fractions in
those cells to obtain the non-conservative approximation:

∇ · (~u~u)NCi =

∑
i′∈N(i)

(κi′∇ · (~u~u)Ci′)∑
i′∈N(i)

κi′
. (3.21)

To compute ∇ · (~u~u)C , fluxes ~u~u are interpolated to face centroids as in (3.18) or
(3.19), and substituted into (3.17).

3.3 Volume-weighted scheme

In a new approach we avoid the small cell problem altogether by taking advantage
of the structure of our finite volume elliptic solvers which take the form κL = κρ
where L is the elliptic operator, ρ is the right-hand side and κ is the volume frac-
tion of a cut cell. This volume-weighted form allows us to compute source terms in
(2.6) which are also volume-weighted. We also introduce a conservative form of the
cell-centered pressure gradient in the pressure-correction form of the projection. The
overall algorithm is as follows:

(1) Initially a cell-centered velocity is obtained from the projection of the prescribed
conditions, U0 = P(U init), similar to a potential flow solution. The pressure
gradient is constructed to balance the viscous stress from this initial velocity,
∇p−1/2 = ν∆U0, to ensure a stable calculation (see §4.3 for details) and then
made to be volume-weighted, κ∇p−1/2.

(2) If the flow is inertial (say, Re > 0.1), then velocities are extrapolated from
cell centers to cell edges as in §2.3 and only the conservative volume weighted
advection term is computed, κ(∇ · (UU)n+1/2). If the Reynolds number is low
(say, Re < 0.1), or approaches the Stokes limit such that ~u · ∇~u � ν∆~u, then
this step is unnecessary.

(3) The implicit Helmholtz equation (2.6) is solved in the form of our finite volume
elliptic equation κL = κρ where the right-hand side has volume-weighted terms
including the source term:

κ(I − ν∆t

2
∆)Un+1,∗=κ(Un +∆t(

ν∆t

2
∆Un − (U · ∇)Un+1/2 −∇pn−1/2)).

(3.22)

(4) For the approximate projection a volume-weighted Poisson equation is solved

κ∆δ = κD(Un+1,∗) (3.23)

where δ = pn+1/2 − pn−1/2 indicates pressure correction form.

15

(5) The volume-weighted cell-centered gradient of the pressure correction, δ, is com-
puted using a corollary to the divergence theorem for gradients

κG(δ) = V
∫∫∫ ∂δ

∂xi
dV = V

∫∫
δ(êi · n̂i)dA. (3.24)

The value of the pressure correction at the cell center can be used at the boundary
centroid or a more elaborate least squares system can be solved for the boundary
value.

(6) The volume-weighted intermediate velocity is corrected with the volume-
weighted gradient of the pressure correction

κUn+1 = κUn+1,∗ − κG(δ). (3.25)

(7) If the flow is inertial, then the volume weighting is removed from velocity in a
normalization procedure similar to (3.21) so that the velocity can be used in the
advection step of the next timestep

Un+1 =

∑
i′∈N(i)

(κi′U
n+1
i′)∑

i′∈N(i)

κi′
. (3.26)

Here, we note that normalization of the volume-weighted velocity is allowed
because the velocity has already been sufficiently smoothed in the solution to
the viscous Helmholtz equation (3.22). For consistency with step (2), this final
step (7) is not necessary for low Reynolds number or Stokes flow.

4 Results

4.1 Accuracy

To demonstrate the accuracy of the algorithm we consider incompressible flow inside
a sphere. The fluid is initialized as a Gaussian vortex

ω(r) = e−20(4r−0.5)2

where r is measured from the center of the sphere at x0 to a point x as r2 = (x −
x0)

2 + (y − y0)
2 + (z − z0)

2 in 3D. The initial velocity can then be prescribed by

u(x, t0)=ω(r)((z − z0)− (y − y0))/r

v(x, t0)=ω(r)((x− x0)− (z − z0))/r

w(x, t0)=ω(r)((y − y0)− (x− x0))/r.

In 2D, r2 = (x− x0)
2 + (y − y0)

2 and

16

u(x, t0) =−ω(r)(y − y0)/r

v(x, t0) = ω(r)(x− x0)/r.

The Reynolds number for this study is Re = 5 based on vortex strength and diameter.

We estimate the error in the solution using the standard Richardson procedure where
computations of differing resolutions are evolved to the same time and compared in
a certain norm (see [36] for details). Convergence rates for the 2D state variables are
displayed in Tables 1, 2 and 3 for L1, L2 and L∞ norms, respectively. We demonstrate
2nd-order accuracy for all variables in all norms. A fixed step size of ∆t = 0.00025,
which is equivalent to a CFL number of σ = 0.5, is run for 512 steps at the finest
resolution of h = 1/2048. We note that the pressure gradient resulting from a single
application of the projection is 1st-order (the scalar pressure is 2nd-order) [16,50]. To
obtain a 2nd-order pressure gradient, an additional approximate projection is required.
The computational cost of this additional projection is minimized by initialization of
the pressure to the value obtained from the first application of the projection.

We show convergence results in 3D in Tables 4, 5 and 6. At the finest resolution of
h = 1/256, a fixed step size of ∆t = 0.0005, which is equivalent to a CFL number of
σ = 0.5, is run for 64 steps. The convergence rates are 2nd-order for all variables in
all norms, except that the velocity components are slightly less than 2nd-order in the
L∞-norm. We attribute this slight degradation in accuracy to the solution not being
fully resolved in the asymptotic regime for convergence.

4.2 Stability of the approximate projection

We demonstrate that the approximate projection operator is stable, i.e., ||P|| < 1
(see [29]), by showing that the divergence of a velocity field diminishes with repeated
application of the projection. The velocity field is initialized to a potential flow past
an infinitely long cylinder with radius = 0.1. The cylinder is in the center of a unit
square domain. We iteratively project the velocity field, U , and evaluate the norm
of the divergence, κD(U), and the norm of the pressure gradient, ∇φ, after each
projection. Figures 4–7 show that all norms of both fields monotonically decrease with
number of projection iterations. Flattening of the curves near the end is due to the
residual of the solution to the Poisson equation by multigrid iterations approaching
machine accuracy.

4.3 Stability in the Stokes limit

We use the algorithm to compute a range of unsteady flows, including low Reynolds
number flows where a steady-state may exist. In this flow regime, parameters can
approach the Stokes limit, Re → 0, where Re = Uclc/ν and Uc, lc are characteristic
quantities, leading to the Stokes equations (Navier-Stokes less the advective deriva-
tive). However, the Stokes equations do not capture all the physics of flows even at

17

Re = 0.1, a value that has traditionally been considered well inside the Stokes limit.
We demonstrate this point by considering flow near a sharp corner, as in [38]. Figure
8 shows a comparison between solving the unsteady Stokes and Navier-Stokes equa-
tions to a steady-state in an abrupt expansion channel, both for the same initial data
at Re = 0.1. The magnitude of the velocity and extent of the recirculation zone are
noticeably greater when ~u · ∇~u is included in the calculation as seen in the difference
in the location of the innermost contour. Comparison of plots of the velocity along
a line through the recirculation zone shows a 5% difference. The difference between
the solutions is more dramatic as the Reynolds number increases. The criterion for a
steady-state solution is Un+1 − Un < ε∆t, where ε = 10−8.

In order to perform stable computations for low Reynolds number flows (Re < 0.1),
we must construct a well-posed IBVP such that both the momentum and continuity
equations are satisfied by the initial conditions. We obtain a divergence-free potential
flow field that satisfies the no-flow normal boundary conditions by projecting the
velocity: U0 = P(U init), where U init = 0 inside the domain. The pressure gradient
is calculated to balance the viscous stress due to the flow field: ∇p−1/2 = ν∆U0. In
this regime, since viscous effects can dominate inertial forces (ν > Uclc), we define the
viscous timestep to be ∆tν = h2/ν. The stability constraint for the algorithm in the
low Reynolds number regime is ∆t = min(∆tCFL,∆tν).

4.4 Scalability and performance

The algorithm described here has been implemented in the Chombo software frame-
work. Chombo provides a set of tools for implementing finite difference and finite
volume methods for the solution of PDEs on block-structured adaptively refined rect-
angular grids. Chombo also supports computations in complex geometries with em-
bedded boundaries. Chombo software libraries enable high performance computing,
data management and I/O for large scale simulations.

We demonstrate the scalability and performance of our Chombo-based algorithm
using a weak scaling test for flow through a cylinder packed with spheres (see Figure
10) as in [49]. In weak scaling the problem domain is refined by the same factor as the
increase in the number of processor cores (e.g., factor of 2 refinement in each spatial
dimension, D, requires 2D× the number of cores). These tests are conducted on the
NERSC Cray XC30 system, Edison, for up to 131,072 cores and on the OLCF Cray
XK7 system, Titan, for up to 262,144 CPU cores. We perform 10 timesteps of the
algorithm and take the average time per timestep in seconds. We use a sweet spot
for domain decomposition and load balancing of one box per processor core where
one box is 323 cells. Since a large number of spheres have to be randomly placed in
a cylinder, it is difficult to guarantee a fixed number of spheres per box. However,
the scaling is theoretically very close to replicated data as in [54]. Therefore, we take
three different aspect ratios of the cylinder—where each aspect ratio is a weak scaling
test in itself—and combine into one continuous scaling curve in Figure 9. The three
sets of weak scaling data are depicted by shape: a 1-to-1 cylinder packed with 750
spheres run on 512-4096-32768-262144 cores (squares), a 2-to-1 cylinder with 1500

18

spheres run on 1024-8192-65536 (triangles) and a 4-to-1 cylinder with 3000 spheres
run on 2048-16384-131072 cores (circles).

On Edison, we observe excellent performance with about 83% efficiency from 512 to
131,072 cores—a relatively flat weak scaling curve—and an average time per timestep
of 20 seconds at the highest concurrency. On Titan, we observe about 67% efficiency
from 512 to 131,072 cores, and only 50% up to 262,144 cores. We note a slight dip
at N = 4096, and even slighter at N = 32768, in both curves that is likely due
to a lower percentage of cut cells from refinement of the geometry. We do observe
an upward trend in the weak scaling curve on Titan, particularly at the two highest
concurrencies (it should be flat throughout), but overall the time only slightly doubles
from the lowest concurrency to the highest. We consider the result on Titan to be
good performance for the vast range of concurrencies, and given the flow physics and
geometry. Furthermore, performance is in the neighborhood of 1 timestep per minute
at the highest concurrency on Titan, which is an acceptable metric for a large scale
fluid dynamics calculation. We do not make use of the GPUs on Titan for this scaling
test, which may contribute to degraded performance.

4.5 Simulation results

We present simulation results for the 2D and 3D incompressible Navier-Stokes equa-
tions for a range of Reynolds numbers in various geometries. Flow problems are set
up such that the flow is typically from left to right in the x-direction, the kinematic
viscosity is that of water, ν = 0.01 cm2/sec, the average velocity at inflow is 1 cm/sec
(Poiseuille in 2D, constant in 3D), unless otherwise stated. For flows where inertial
forces have an effect (typically Re > 0.1), the CFL number is σ = 0.9. All units are
specified in the CGS system. The maximum grid size resulting from domain decom-
position and the AMR hierarchy is 2562 cells per grid block (box) in 2D and 323 cells
per grid block in 3D. The criterion for steady-state flow is Un+1 − Un < ε∆t, where
ε = 10−8.

4.5.1 Low Reynolds number flow

We demonstrate the algorithm at the low end of the Reynolds number flow regime by
showing steady-state results for the packed cylinder used in the scaling study. Using
65,536 processor cores on the NERSC Cray XC30 Edison we simulate steady-state
flow in the 2-to-1 cylinder packed with 1500 spheres, as in Figure 10b. In Figures 11
and 12 we show the axial (x) and transverse (z) velocities with magnified views to
convey the tortuosity of the flow and the resolved viscous boundary layer in the pore
space. The grid resolution for this simulation is 2048× 1024× 1024 cells.

To demonstrate hero run capability we also simulated steady-state flow in the 4-to-1
cylinder geometry packed with 3000 spheres in Figure 10c. The steady-state velocity
is shown in Figure 13. This simulation made use of 131,072 processor cores on OLCF
Titan. The Reynolds number is 0.5 for both simulations.

19

4.5.2 Direct numerical simulation from image data.

In addition to synthetic geometries as in the packed cylinder we demonstrate direct
simulation from microtomography image data. Figure 14 shows flow in Bedford lime-
stone with porosity of 29%. In this simulation, resolution of the cross section is critical
in order to capture viscous effects in very tight pore space. The grid resolution of this
simulation is 2048× 2048× 320 cells, or h = 43nm. The image voxel size is 4.4 µm.

We also demonstrate the ability to model fully resolved steady-state flow in a fractured
shale in Figure 15. The geometry in this case is obtained from focused ion beam
scanning electron microscopy (FIB-SEM) image data. The pore space is tighter than
the limestone, even though a fracture aperture is present, with a porosity of 18%.
The grid resolution is 1920 × 1600 × 640, or h = 48nm. The image voxel size is 50
nm. In both the synthetic packed cylinder and the image data simulations we make
use of the EB-AMG method in [49] to solve elliptic problems in these very complex
geometries.

4.5.3 Flow past a cylinder (Re = 300)

We perform direct numerical simulation (DNS) of flow past a cylinder in both 2D
and 3D. The diameter of the cylinder centered at x = 1 is d = .125 in a domain
that has dimensions l = 16 and w = 8. With Uc = 1, lc = d = 0.125 and ν =
0.0004167, the Reynolds number for this simulation is Re = 300. In Figure 16a we
performed a highly resolved four-level AMR calculation in 2D at Re = 300 where
the finest level covers only 5% of the total domain at t = 98. The length of wake in
this calculation is a very long 120d, which is shown to be necessary to capture the
halfway downstream secondary structures and far downstream tertiary structures.
(We have also simulated an extended domain with twice the length (l = 32) shown in
Figure 19 that depicts additional wake structures, but with no comparison to 3D.) A
recirculation zone persists within the secondary wake structure along the centerline
between the vortices above and below. We simulate a domain width of 64d and use
slip wall boundary conditions at boundaries transverse to the x-direction of the flow
to minimize the interaction of domain boundary effects with the wake. The additional
mesh refinement tracks dynamically with the magnitude of vorticity in time using a
refinement threshold of 2.0. Grid blocks are outlined (cells not shown) for this five-
level calculation in Figure 17 (top). Each grid block contains a maximum of 162 cells
for a given level of refinement.

We performed a simulation in 3D for comparison to 2D using the same parameters, but
with only two additional AMR levels. Williamson notes a transition Reynolds number
regime up to 300, beyond which velocity fluctuations become irregular and vortex
formation is three-dimensional [57–59]. In the 3D simulation, a number of transient
structures develop in the fluid that organize at very long time into a persistent train
of vortices (see Figure 16b,c), which is only similar to the near wake in 2D (see
Figure 16a). The third dimension has a self-organizing effect on the wake structures
as previously noted [24,61]. The flow in the wake is clearly not two-dimensional as
seen in the bowing of the peaks and valleys, and narrowing of the length of the rows.

20

This point is further emphasized in the isocontour plot of z-vorticity in Figure 18.
We also show the grid blocks with cells for this two-level calculation in Figure 17
(bottom). The finest level is gridded on 12% of the domain at t = 98. Each grid block
contains a maximum of 163 cells for a given level of refinement.

4.5.4 Flow past a sphere (Re = 600)

We perform DNS of 3D flow past a sphere. The diameter of the sphere, centered
at x = 1, is d = .125 in a domain that has dimensions l = 16 and w = 8. With
Uc = 2, lc = d = 0.125 and ν = 0.0004167, the Reynolds number for this simulation
is Re = 600. In Figure 20 we show a resolved three-level AMR calculation where the
finest level covers less than 1% of the total domain. (The domain is very large in order
to minimize boundary interactions with the wake.) The base grid is 512× 256× 256
with two additional levels of refinement, factor of 4. The maximum grid box size in
the AMR hierarchy is 323. The 3D plots at the top of Figure 20 depict a notched
wake in the velocity field, but no oscillations at t = 2 seconds. We show outlines of
the grid boxes to indicate refinement only around the sphere and the wake, and not
away from the interesting part of the flow. The second row of plots shows the same in
a 2D slice. At the bottom of the figure we show a transverse component of velocity as
well as the pressure. Figure 21 depicts a wake that has begun to oscillate at t = 2.5
seconds.

4.5.5 High Reynolds number flow in a contraction (Re = 6300)

We show results for another example of the effectiveness of AMR when combined
with the embedded boundary method by demonstrating DNS of flow in a sudden
contraction. This example is intended to model flow of oil upward in a long (over 4
km) pipe buried in the sea bed that undergoes essentially a contraction at the sea floor
near a blowout preventer (as in the Deepwater Horizon Macondo well [35,41]). In such
a scenario it is critical to solve for the bulk flow characteristics like pressure drop and
flow rate over the entire length of the pipe in order to assess the likelihood of success
for intervention strategies. However, it is equally critical to resolve the microscopic, by
comparison, boundary layer effects near the blowout preventer in order to be able to
determine failure points. Here, we focus on Newtonian flow in a 1 meter length section
of the pipe near a 4-to-1 contraction in two dimensions of Cartesian coordinates for
demonstration purposes only. The base grid contains 2048 × 1024 cells (0.488 mm
resolution) with 32 boxes of 2562 cells. Three additional levels of refinement (factor
of 4) are added dynamically for an effective resolution of 7.6 µm near the contraction.
The finest AMR level contains 8975 boxes and covers less than 3% of the domain. The
Reynolds number is approximately 6300. Figure 22 depicts transient turbulent flow
in the contraction at t = 0.125 seconds. We show both velocity and pressure, with
extreme gradients near and just downstream of the contraction. We show increased
magnification in the lower figures, with box boundaries and, in the bottom row, mesh
resolution.

21

5 Conclusions

We present a conservative, second-order accurate method to solve the incompressible
Navier-Stokes equations in complex geometries. The method is based on a finite vol-
ume, embedded boundary approach that makes use of the discrete form of the diver-
gence theorem to discretize the solution in irregular control volumes resulting from the
intersection of solid boundaries with a regular, Cartesian grid. The method reduces to
a standard finite difference approach in regular cells away from the boundary. We in-
troduce several novel ideas including a volume-weighted scheme that avoids the small
cell problem associated with cut cell methods and a conservative cell-centered gradi-
ent for approximate projections. We have coupled the embedded boundary method
with AMR to provide a high-performance, high-resolution simulation tool for model-
ing multiscale, multiphysics problems in complex geometries. The algorithm scales to
262,144 processor cores and is amenable to direct simulation from image data. The
cut cell algorithm described here is the basis for a high performance production code
that models 3D engineering scale problems involving incompressible viscous flow and
transport in complex geometries. We demonstrate the robustness of the algorithm
for a wide range of Reynolds numbers and flow geometries—from creeping flow in
realistic pore space to transitional flows past bluff bodies to turbulent pipe flow.

We model moderate Reynolds number phenomena for flow past a cylinder at a fidelity
that has not yet been achieved. Typically, only the near wake of the cylinder is
modeled numerically, as in [24,61]. In 2D, we observe secondary, tertiary and even
quaternary structures far downstream of the near wake at a scale that is much broader
than previously modeled, up to 250 cylinder diameters downstream in the wake. By
comparison, in 3D, we observe a very long and persistent single train of vortices with
coherent structures in the cross channel direction for the same length wake as in the
2D case. Similarly, we have also demonstrated high resolution of turbulent flow past
a sphere in the early stages of wake formation. This capability could prove to be very
effective in an investigation of both near and far wake dynamics in high Reynolds
number flows past bluff bodies.

We have shown that the method is also suitable for direct numerical simulation of
high Reynolds number internal flows. The adaptive capability captures small scale,
microscopic features in the viscous boundary layer near a singular geometric feature
such as a contraction while also resolving bulk flow properties in a domain that
is 6 orders of magnitude larger than the finest spatial resolution of the boundary
layer. This demonstration was motivated by a large scale engineering model for worst
case discharge and failure point analysis of the Deepwater Horizon Macondo oil well
blowout in 2010.

With demonstrated capability to perform direct simulation from image data, the algo-
rithm has served as the basis for low Reynolds number reactive transport simulations
in realistic pore space [39,40] and is proving to be a useful tool for modeling flow
in fractured subsurface materials. The algorithm is also amenable to methods for
tracking fluid-fluid and fluid-solid interfaces [36], providing a consistent approach to
modeling multiphase flow and time-dependent boundary problems.

22

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, and in part by the Of-
fice of Basic Energy Sciences Energy Frontier Research Centers and used resources of
the National Energy Research Scientific Computing Center, all under contract num-
ber DE-AC02-05CH11231. This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility supported by
the Office of Science of the Department of Energy under contract number DE-AC05-
00OR22725. This research used resources of the Argonne Leadership Computing Fa-
cility at Argonne National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02-06CH11357. Simulation
data in Figure 14 is based upon synchrotron microtomography imagery acquired by
Jonathan Ajo-Franklin and Marco Voltolini at the Advanced Light Source, Beamline
8.3.2, which is supported by the Office of Science, Office of Basic Energy Sciences, of
the U.S. DOE under contract DE-AC02-05CH11231. Simulation data in Figure 15 is
based upon FIB-SEM imagery obtained by Lisa Chan at Tescan USA and processed
by Terry Ligocki (LBNL), courtesy of Tim Kneafsey (LBNL).

References

[1] M. J. Aftosmis, J. Melton, and M. J. Berger. Robust and efficient Cartesian mesh
generation for component-base geometry. AIAA Journal, 36(6):952–960, June 1998.

[2] A. Almgren, J. Bell, P. Colella, and T. Marthaler. A Cartesian grid projection method
for the incompressible Euler equations in complex geometries. SIAM Journal on
Scientific Computing, 18(5):1289–1309, 1997.

[3] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. J. Welcome. A conservative
adaptive projection method for the variable density incompressible Navier-Stokes
equations. J. Comput. Phys., 142(1):1–46, May 1998.

[4] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the
incompressible Navier-Stokes equations. J. Comput. Phys., 85:257–283, 1989.

[5] J. B. Bell, P. Colella, and L. H. Howell. An efficient second order projection method
for viscous incompressible flow. In AIAA 10th Comp. Fluid Dynamics Conf., pages
360–367, 1991.

[6] J. B. Bell, P. Colella, and M.L. Welcome. Conservative front-tracking for inviscid
compressible flow. In AIAA 10th Computational Fluid Dynamics Conference. Honolulu,
pages 814–822, 1991.

[7] M. Berger, C. Helzel, and R. LeVeque. H-box methods for the approximation of
hyperbolic conservation laws on irregular grids. SIAM Journal of Numerical Analysis,
41:893–918, 2003.

[8] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys., 53:484–512, March 1984.

23

[9] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
J. Comput. Phys., 82(1):64–84, May 1989.

[10] M. J. Berger and R. J. LeVeque. Stable boundary conditions for Cartesian grid
calculations. Technical Report 90-37, ICASE, May 1990.

[11] I. L. Chern and P. Colella. A conservative front-tracking method for hyperbolic
conservation laws. Technical Report UCRL-97200, Lawrence Livermore National
Laboratory, 1987.

[12] A. J. Chorin. Numerical solutions of the Navier-Stokes equations. Math. Comp., 22:745–
762, 1968.

[13] M-H. Chung. Cartesian cut cell approach for simulating incompressible flows with rigid
bodies of arbitrary shape. Computers & Fluids, 35(6):607 – 623, 2006.

[14] W. J. Coirier and K. G. Powell. An assessment of Cartesian-mesh approaches for the
Euler equations. J. Comput. Phys., 117:121–131, 1995.

[15] P. Colella, D. T. Graves, B. Keen, and D. Modiano. A Cartesian grid embedded
boundary method for hyperbolic conservation laws. J. Comput. Phys., 211:347–366,
2006.

[16] P. Colella and D. P. Trebotich. Numerical simulation of incompressible viscous flow in
deforming domains. Proc Natl Acad Sci USA, 96(10):53785381, 1999.

[17] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A Non-Oscillatory Eulerian Approach
to Interfaces in Multimaterial Flows (The Ghost Fluid Method). J. Comput. Phys.,
152(2):457–492, 1999.

[18] R. Fedkiw and X-D. Liu. The Ghost Fluid Method for Viscous Flows. In M. Hafez
and J.-J. Chattot, editors, Innovative Methods for Numerical Solutions of Partial
Differential Equations, pages 111–143. World Scientific Publishing, New Jersey, 2002.

[19] D. T. Graves, P. Colella, D. Modiano, J. Johnson, B. Sjogreen, and X. Gao. A Cartesian
grid embedded boundary method for the compressible NavierStokes equations. Comm.
App. Math. Comp. Sci., 8(1):99–122, 2013.

[20] C. Helzel, M. J. Berger, and R. J. LeVeque. A high–resolution rotated grid method for
conservation laws with embedded geometries. SIAM J. Sci. Stat. Comput., 2005.

[21] H. S. Johansen and P. Colella. A Cartesian grid embedded boundary method for
Poisson’s equation on irregular domains. J. Comput. Phys., 147(2):60–85, December
1998.

[22] C. R. Ethier K. Shahbazi, P. F. Fischer. A high-order discontinuous Galerkin method
for the unsteady incompressible NavierStokes equations. J. Comput. Phys., 222(1):391–
407, 2007.

[23] J. Van Kan. A second-order accurate pressure-correction scheme for viscous
incompressible flow. SIAM Journal on Scientific and Statistical Computing, 7:870–891,
1986.

[24] G. E. Karniadakis and G. S. Triantafyllou. Three-dimensional dynamics and transition
to turbulence in the wake of bluff objects. J. Fluid Mech., 238:1–30, 1992.

24

[25] B. Keen and S. Karni. A second order kinetic scheme for gas dynamics on arbitrary
grids. J. Comput. Phys., 2005.

[26] J. Kim and P. Moin. Application of a fractional-step method to incompressible Navier-
Stokes equations. J. Comput. Phys., 59:308–323, 1985.

[27] M.P. Kirkpatrick, S.W. Armfield, and J.H. Kent. A representation of curved boundaries
for the solution of the NavierStokes equations on a staggered three-dimensional
Cartesian grid. J. Comput. Phys., 184(1):1 – 36, 2003.

[28] M.-C. Lai and C. S Peskin. An Immersed Boundary Method with Formal Second-Order
Accuracy and Reduced Numerical Viscosity . J. Comput. Phys., 160:705–719, 2000.

[29] M. F. Lai. A Projection Method for Reacting Flow in the Zero Mach Number Limit.
PhD thesis, University of California, Berkeley, 1994.

[30] R. LeVeque and Z. Li. The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis,
31(4):1019–1044, 1994.

[31] T. J. Ligocki, P. O. Schwartz, J. Percelay, and P. Colella. Embedded boundary grid
generation using the divergence theorem, implicit functions, and constructive solid
geometry. J. Phys: Conference Series, 125(1):1–5, 2008.

[32] D Martin and P Colella. A cell-centered adaptive projection method for the
incompressible Euler equations. J. Comput. Phys., 2000.

[33] D. F. Martin, P. Colella, and D. T. Graves. A cell-centered adaptive projection method
for the incompressible Navier-Stokes equations in three dimensions. J. Comput. Phys.,
227:1863–1886, 2008.

[34] P. McCorquodale, P. Colella, and H. Johansen. A Cartesian grid embedded boundary
method for the heat equation on irregular domains. J. Comput. Phys., 173:620–635,
November 2001.

[35] M. K. McNutt, S. Chu, J. Lubchenco, T. Hunter, G. Dreyfus, S. A. Murawski, and D. M.
Kennedy. Applications of science and engineering to quantify and control the Deepwater
Horizon oil spill. Proceedings of the National Academy of Sciences, 109(50):20222–
20228, 2012.

[36] G. H. Miller and D. Trebotich. An embedded boundary method for the Navier-Stokes
equations on a time-dependent domain. Comm. App. Math. Comp. Sci., 7(1):1–31,
2012.

[37] M. L. Minion. On the stability of Godunov-projection methods for incompressible flow.
J. Comput. Phys., 123(2):435–449, Feb. 1996.

[38] H. K. Moffatt. Viscous and resistive eddies near a sharp corner. J. Fluid Mech., 18:1–18,
1964.

[39] S. Molins, D. Trebotich, C. I. Steefel, and C. Shen. An investigation of the effect of
pore scale flow on average geochemical reaction rates using direct numerical simulation.
Water Resources Research, 48(3):n/a–n/a, 2012.

[40] S. Molins, D. Trebotich, L. Yang, J. B. Ajo-Franklin, T. J. Ligocki, C. Shen, and C. I.
Steefel. Pore-scale controls on calcite dissolution rates from flow-through laboratory
and numerical experiments. Environmental Science & Technology, 48(13):7453–7460,
2014. PMID: 24865463.

25

[41] C. M. Oldenburg, B. M. Freifeld, K. Pruess, L. Pan, S. Finsterle, and G. J. Moridis.
Numerical simulations of the Macondo well blowout reveal strong control of oil flow by
reservoir permeability and exsolution of gas. Proceedings of the National Academy of
Sciences, 109(50):20254–20259, 2012.

[42] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome. An adaptive
Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput.
Phys., 120(2):278–304, September 1995.

[43] Richard B. Pember, John B. Bell, Phillip Colella, William Y. Crutchfield, and Michael L.
Welcome. An adaptive Cartesian grid method for unsteady compressible flow in
irregular regions. J. Comput. Phys., 120(2):278 – 304, 1995.

[44] Charles S Peskin. Flow patterns around heart valves: A numerical method. J. Comput.
Phys., 10(2):252 – 271, 1972.

[45] Stephane Popinet. Gerris: a tree-based adaptive solver for the incompressible Euler
equations in complex geometries. J. Comput. Phys., 190(2):572 – 600, 2003.

[46] J. J. Quirk. An alternative to unstructured grids for computing gas dynamics flows
around arbitrarily complex two-dimensional bodies. Computers and Fluids, 23:125–
142, 1994.

[47] P. O. Schwartz, J. Percelay, T. Ligocki, H. Johansen, D. T. Graves, P. Devendran,
P. Colella, and E. Ateljevich. High accuracy embedded boundary grid generation using
the divergence theorem. Comm. App. Math. Comp. Sci., 2014. in press.

[48] D. Trebotich. Simulation of biological flow and transport in complex geometries using
embedded boundary / volume-of-fluid methods. Journal of Physics: Conference Series,
78:012076, 2007.

[49] D. Trebotich, M. F. Adams, C. I. Steefel, S. Molins, and C. Shen. High
resolution simulation of pore scale reactive transport processes associated with carbon
sequestration. Computing in Science and Engineering, 2014. to appear Nov/Dec
Leadership Computing Issue, DOI: 10.1109/MCSE.2014.77.

[50] D. Trebotich and P. Colella. A projection method for incompressible viscous flow on
moving quadrilateral grids. J. Comput. Phys., 166:191–217, 2001.

[51] D. Trebotich, P. Colella, G. H. Miller, A. Nonaka, T. Marshall, S. Gulati, and
D. Liepmann. A numerical algorithm for complex biological flow in irregular microdevice
geometries. In Technical Proceedings of the 2004 Nanotechnology Conference and Trade
Show, volume 2, pages 470–473, 2004.

[52] D. Trebotich, G. H. Miller, and M. D. Bybee. A penalty method to model particle
interactions in DNA-laden flows. J. Nanosci. Nanotechnol., 8(7):3749–3756, 2008.

[53] D. Trebotich, G. H. Miller, P. Colella, D. T. Graves, D.F. Martin, and P. O. Schwartz.
A tightly coupled particle-fluid model for DNA-laden flows in complex microscale
geometries. In K. J. Bathe, editor, Computational Fluid and Solid Mechanics, pages
1018–1022. Elsevier, 2005.

[54] D. Trebotich, B. Van Straalen, D. T. Graves, and P. Colella. Performance of embedded
boundary methods for CFD with complex geometry. Journal of Physics: Conference
Series, 125:012083, 2008.

26

[55] E. H. Twizell, A. B. Gumel, and M. A. Arigu. Second-order, L0-stable methods for the
heat equation with time-dependent boundary conditions. Advances in Computational
Mathematics, 6:333–352, 1996.

[56] B. van Leer. Towards the ultimate conservative difference scheme: A second-order sequel
to Godunovs method. J. Comput. Phys., 32:101–136, 1979.

[57] C. H. K. Williamson. Defining a universal and continuous Strouhal-Reynolds number
relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids, 31:2742,
1988.

[58] C. H. K. Williamson. The existence of two stages in the transition to three-
dimensionality of a cylinder wake. Phys. Fluids, 31:3165, 1988.

[59] C. H. K. Williamson. Vortex dynamics in the cylinder wake. Ann. Rev. Fluid. Mech.,
28:477–539, 1996.

[60] T. Ye, R. Mittal, H.S. Udaykumar, and W. Shyy. An accurate Cartesian grid method
for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys.,
156(2):209 – 240, 1999.

[61] H.-Q. Zhang, U. Fey, B. R. Noack, M. König, and H. Eckelmann. On the transition of
the cylinder wake. Phys. Fluids, 7:779, 1995.

27

Fig. 1. Example of an irregular geometry on a Cartesian grid (left). Close-up view of em-
bedded boundaries “cutting” regular cells (middle). Single cut cell showing boundary fluxes
(right). Shaded area represents volume of cells excluded from domain. Dots represent cell–
centers. X’s represent centroids.

C

A
B

D
d2

d3

D

BA

d2

C

d3

Fig. 2. 3D bilinear flux interpolation stencil showing the interpolation point marked by an
“×” for a 3D face in ê1 direction using face-centered points A, B, C and D.

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

d2

d1

1

3

2

n

B

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

d2

d1

B

1 2

3

54

6 7

n

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

Fig. 3. Least squares stencil to obtain flux for Dirichlet boundary condition on embedded
boundary in 2D (left) and 3D (right) with radius of 1.

28

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.781614e-05 1.981 4.513495e-06 1.990 1.135840e-06

v 1.788296e-05 1.981 4.529397e-06 1.991 1.139716e-06

∇xp 1.245135e-04 1.998 3.117580e-05 1.999 7.798800e-06

∇yp 1.245125e-04 1.998 3.117575e-05 1.999 7.798797e-06

Table 1
2D solution error convergence rates using L1-norm for h = 1

2048 .

Variable e8h→4h Order e4h→2h Order e2h→h

u 2.997859e-05 1.977 7.613610e-06 1.989 1.918581e-06

v 3.011462e-05 1.978 7.645604e-06 1.989 1.926329e-06

∇xp 2.672975e-04 1.997 6.696069e-05 1.999 1.675127e-05

∇yp 2.672958e-04 1.997 6.696059e-05 1.999 1.675127e-05

Table 2
2D solution error convergence rates using L2-norm for h = 1

2048 .

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.234211e-04 1.980 3.129091e-05 1.990 7.878456e-06

v 1.237856e-04 1.980 3.138271e-05 1.990 7.899819e-06

∇xp 1.396595e-03 1.995 3.504449e-04 1.998 8.771770e-05

∇yp 1.396573e-03 1.995 3.504435e-04 1.998 8.771761e-05

Table 3
2D solution error convergence rates using L∞-norm for h = 1

2048 .

29

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.071815e-03 1.865 2.941499e-04 1.948 7.623080e-05

v 1.069533e-03 1.864 2.937195e-04 1.948 7.613267e-05

w 1.068955e-03 1.865 2.933635e-04 1.948 7.603024e-05

∇xp 1.593183e-02 1.806 4.556606e-03 1.933 1.192892e-03

∇yp 1.592733e-02 1.805 4.556155e-03 1.933 1.192860e-03

∇zp 1.593025e-02 1.806 4.556234e-03 1.933 1.192863e-03

Table 4
3D solution error convergence rates using L1-norm for h = 1

256 .

Variable e8h→4h Order e4h→2h Order e2h→h

u 2.294986e-03 1.846 6.382495e-04 1.900 1.709917e-04

v 2.288364e-03 1.847 6.361839e-04 1.900 1.704523e-04

w 2.287161e-03 1.847 6.357047e-04 1.900 1.703239e-04

∇xp 4.846120e-02 1.748 1.442698e-02 1.922 3.808233e-03

∇yp 4.845033e-02 1.748 1.442543e-02 1.921 3.808121e-03

∇zp 4.843998e-02 1.748 1.442312e-02 1.921 3.807923e-03

Table 5
3D solution error convergence rates using L2-norm for h = 1

256 .

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.891858e-02 1.841 5.280958e-03 1.781 1.536950e-03

v 1.903841e-02 1.849 5.285737e-03 1.803 1.514318e-03

w 1.911926e-02 1.846 5.319278e-03 1.793 1.534994e-03

∇xp 4.893581e-01 1.565 1.653736e-01 1.868 4.529462e-02

∇yp 4.880882e-01 1.562 1.652861e-01 1.868 4.528107e-02

∇zp 4.886462e-01 1.564 1.653033e-01 1.868 4.528735e-02

Table 6
3D solution error convergence rates using L∞-norm for h = 1

256 .

30

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

L∞ (div(vel))
L1(div(vel))
L2(div(vel))

Fig. 4. Norms (L1, L2, L∞) of κD~u versus number of projection iterations in 2D test.
h = 1.0/256

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1 10 100

L∞ (|grad(phi)|)
L1(|grad(phi)|)
L2(|grad(phi)|)

Fig. 5. Norms (L1, L2, L∞) of ∇φ versus number of projection iterations in 2D test.
h = 1.0/256

31

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100

L∞ (div(vel))
L1(div(vel))
L2(div(vel))

Fig. 6. Norms (L1, L2, L∞) of κD~u versus number of projection iterations in 3D test.
h = 1.0/64

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100

L∞ (|grad(phi)|)
L1(|grad(phi)|)
L2(|grad(phi)|)

Fig. 7. Norms (L1, L2, L∞) of ∇φ versus number of projection iterations in 3D test.
h = 1.0/64

32

(a)

(b)

-0.001

-0.0009

-0.0008

-0.0007

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

V
el

oc
ity

Distance

Stokes
Navier-Stokes

(c)

Fig. 8. Zoomed in view of recirculation zone in the corner behind backward facing step for
Re = 0.1. (a) Solution to Stokes equation. (b) Solution to Navier-Stokes equation. (c) Plots
of velocity along dotted line in top figures.

33

Fig. 9. Weak scaling on NERSC Cray XC30 (Edison) and OLCF Cray XK7 (Titan, no
GPUs). Horizontal axis is concurrency, N , and vertical axis is average time in seconds per
timestep.

34

(a)

(b)

(c)

Fig. 10. Packed cylinder geometries for weak scaling (replication) test in Table 9. (a) 1
cm long cylinder packed with 750 spheres, resolution h ≈ 2.44µm (2048 × 2048 × 2048).
This geometry is used for N = 512, 4096, 32768, 261144. (b) 2 cm long cylinder packed
with 1500 spheres (2048 × 1024 × 1024), resolution h ≈ 4.88µm. This geometry is used
for N = 1024, 8192, 65536. (c) 4 cm long cylinder packed with 3000 spheres, resolution
h ≈ 4.88µm (4096 × 1024 × 1024). This geometry is used for N = 2048, 16384, 131072.
Sphere radii = 250 µm.

35

Fig. 11. Steady-state flow through the packed cylinder geometry in Figure 10b. Axial velocity
shown with magnified views of top and bottom of cross-sectional slice. Inlet axial velocity is
0.01 cm/sec, Re = 0.5. Computation performed on NERSC Cray XC30 Edison using 65,536
processor cores.

36

Fig. 12. Steady-state flow through the packed cylinder geometry in Figure 10b. Transverse
(z) velocity shown with magnified views of top and bottom of cross-sectional slice. Inlet
axial velocity is 0.01 cm/sec, Re = 0.5. Computation performed on NERSC Cray XC30
Edison using 65,536 processor cores.

37

Fig. 13. Steady-state flow through the packed cylinder geometry in Figure 10c. From top to
bottom, axial (x) and transverse (y) and (z) velocities. Inlet axial velocity is 0.01 cm/sec,
Re = 0.5. Spheres have not been voided in the visualization, unlike in Figures 11 and 12.
Computation performed on OLCF Titan using 131,072 processor cores.

38

Fig. 14. Steady-state flow through Bedford limestone. Embedded boundary grid in gray
with z−velocity data (left), and magnification of bottom of disk (right). h = 43 nm,
2048×2048×320 total grid cells, 29% porosity. Inlet velocity is 0.0376 cm/sec. Computation
performed on OLCF Titan using 40,960 processor cores.

39

Fig. 15. Steady-state flow through fractured shale. Embedded boundary grid in gray (top,
left) with slices at mid-planes of z−velocity (top, right), magnifications (middle) and rotated
view of boundary data (bottom, left) with slice planes near maximum velocity location
(bottom, right). h = 48.4 nm, 1920×1600×640 total grid cells, 18% porosity. Inlet velocity
is 0.008 cm/sec. Computation performed on NERSC Hopper using 60,000 processor cores.

40

(a)

(b)

(c)

Fig. 16. Flow past a cylinder at Re = 300. (a) 2D simulation of vorticity; (b) 3D simulation
of y-vorticity in x-z plane at z = 4.125; (c) 3D simulation of y-vorticity in x-y plane at
y = 4. Cylinder has radius of r = 0.0625 and is shown in white centered at x = 1, y = 4.125
in 2D, and x = 1, y = 4, z = 4.125 in 3D. Time simulated is 98 seconds.

41

Fig. 17. Zoomed in view of Figure 16 showing AMR hierarchy. (top) 2D vorticity at left
and right sections in the wake with grid block outlines for 4 levels of refinement, factor of
2. Each block has a maximum of 162 cells (cells not shown). Finest level (h = 1/512) is
gridded on 5% of the total domain. (bottom) 3D y-vorticity in x-z plane at y = 4 at left and
right sections in the wake with grid block outlines and cells for 2 levels of refinement, factor
of 2. Each block contains 163 cells in 3D (cells shown for x-z plane). Finest level (h = 1/64)
is gridded on 12% of the total domain.

Fig. 18. 3D isocontour (ωz = 0.001) of z-vorticity for flow past a cylinder at Re = 300 and
t = 98 seconds. Isocontour is contained by the finest level of grid blocks.

42

(a)

(b)

(c)

(d)

Fig. 19. 2D flow past a cylinder at Re = 300 with extended wake (l = 32). Vorticity in (a),
with AMR hierarchy of boxes enclosing the wake in (b), and two finest levels in (c) and (d).
Cylinder has radius of r = 0.0625 and is shown as a black spot near inlet. Wake extends
approximately 250 cylinder diameters. Time simulated is 112 seconds.

43

Fig. 20. Flow past a sphere, Re = 600. (top) Velocity in x-direction shown in 3D, with AMR
grids (right). (middle) Velocity in x-direction in x-y plane, with grids (right). (bottom)
Velocity in y-direction (left) and pressure in x-y plane (right). Base grid is 512× 256× 256
with 2 additional levels of refinement, factor of 4. Domain is 16 cm long and 8 cm wide
by 8 cm wide. Sphere diameter is 0.125 cm. Inlet velocity is 2 cm/sec. Simulated time is
2 seconds and early in wake formation with no vortex shedding. Simulation performed on
8192 nodes, 1 rank per node on ALCF BGQ Mira.

44

Fig. 21. Flow past a sphere, Re = 600. (top) Vorticity in z-direction (left), with AMR
grids (right). (middle) Velocity in x-direction (left), pressure (right). (bottom) Velocity in
y-direction (left) and velocity in z-direction (right). Base grid is 512 × 256 × 256 with 2
additional levels of refinement, factor of 4. Domain is 16 cm long and 8 cm by 8 cm in
cross section. Sphere diameter is 0.125 cm. Inlet velocity is 2 cm/sec. Simulated time is 2.5
seconds and early in wake formation but vortices have begun to shed. All plots shown in
x-y plane. Simulation performed on 8192 nodes, 1 rank per node on ALCF BGQ Mira.

45

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 22. Turbulent flow in 2D contraction, Re ≈ 6300. (a) Conceptual model for oil flow
entering a hypothetical failed blowout preventer depicted as a wellbore contracted into a
(stuck) drill pipe. (b) Axial fluid velocity in 100 cm long by 50 cm wide section of contraction.
(c) Pressure. (d) Increased magnification of velocity near contraction corner, with finer levels
of AMR boxes (e). (f) Increased magnification of pressure. (g) Increased magnification
of velocity, with finer levels of AMR boxes and mesh (h). (i) Increased magnification of
pressure. Velocity range is -65.52 cm/sec (blue) to 84.66 cm/sec (red). Inlet average velocity
is 10 cm/sec. Pressure range is -6662 bar (blue) to 3398 bar (red). Base grid is 2048× 1024
with 3 additional levels of refinement by factor of 4. t = 0.125 secs. Computations performed
on 8192 cores at NERSC.

46

